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On the other hand, note that
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Combining (1) and (2), we have the Lagrange’s identity:
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4 By triangle inequality, for |z| = R, we have
|3z — 1] <|32] +1 =3R+ 1 and
2%+ 42% + 3] = [2% + 12% + 3] > (|2 — 1)(|2* - 3) = (R? — 1)(R® - 3)

The above inequalities imply
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5 Along the vertical line segment from R to R + 4mi with R > 0, we have |e*| = ef*. Furthermore,
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by triangle inequality,
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As a result,
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6 (a) No. It is because if antiderivative exists, the contour integral of f(z) along any closed contour

must be zero. However, by direct calculation,
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(b) Yes. The antiderivative of g(z) = — is given by G(z) = — on C\0.
z z

7 Write f(z) = f(z,y) = u(z,y) + iv(x,y). Since f(z) is an analytic function on its domain, u and

v are real differentiable and the Cauchy Riemann equations are satisfied.
Uy = Uy and Uy = —Ug (3)
By definition, we have g(z) = g(z) = u(z, —y) — iv(x, —y). Write g(z) = p(z,y) + iq(z,y). From
this one can check that
Pz = Ua (T, —Y), Py = —Uy(T, —Y), 4o = —va (2, —Y), qy = vy(z, —y)

By (3), we have p, = ¢, and p, = ¢,. Since p and g are real differentiable and the Cauchy Riemann

equations are satisfied, ¢ is analytic.



